13 research outputs found

    Instrumental Utilization to Elevate Puncture Result in Percutaneous Renal Biopsy

    Get PDF
    In performing percutaneous renal biopsy, it seems that the lesser the amount of the intercalative tissue existing in the space between the derm to the kidney, the more improved the results of puncture would be, with minimal complications of puncture. As we believe such ideal operation may be secured by methods based on open needle biopsy, we have carried out renal puncture by employing the technic which constitutes of insertion of ascites trocar needle in the direction and to the depth as determined by renal explorative needle, followed by removal of the inner trocar needle and insertion of a Tru-Cut needle into the outer trocar. As a result, in 49 out of 50 cases renal tissue could be obtained, the mean length of preparations for optical microscopy being 13.8±4.3 mm and the mean number of the glomerulus contained being 25.3±15.8 with a range from 7 at the smallest and 66 at the greatest. The value of the utilization of outer trocar of the ascites trocar needle as a guide needle in renal puncture was discussed in detail

    Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell lines are commonly used in various kinds of biomedical research in the world. However, it remains uncertain whether genomic alterations existing in primary tumor tissues are represented in cell lines and whether cell lines carry cell line-specific genomic alterations. This study was performed to answer these questions.</p> <p>Methods</p> <p>Array-based comparative genomic hybridization (CGH) was employed with 4030 bacterial artificial chromosomes (BACs) that cover the genome at 1.0 megabase resolution to analyze DNA copy number aberrations (DCNAs) in 35 primary breast tumors and 24 breast cancer cell lines. DCNAs were compared between these two groups. A tissue microdissection technique was applied to primary tumor tissues to reduce the contamination of samples by normal tissue components.</p> <p>Results</p> <p>The average number of BAC clones with DCNAs was 1832 (45.3% of spotted clones) and 971 (24.9%) for cell lines and primary tumor tissues, respectively. Gains of 1q and 8q and losses of 8p, 11q, 16q and 17p were detected in >50% of primary cancer tissues. These aberrations were also frequently detected in cell lines. In addition to these alterations, the cell lines showed recurrent genomic alterations including gains of 5p14-15, 20q11 and 20q13 and losses of 4p13-p16, 18q12, 18q21, Xq21.1 and Xq26-q28 that were barely detected in tumor tissue specimens. These are considered to be cell line-specific DCNAs. The frequency of the HER2 amplification was high in both cell lines and tumor tissues, but it was statistically different between cell lines and primary tumors (P = 0.012); 41.3 ± 29.9% for the cell lines and 15.9 ± 18.6% for the tissue specimens.</p> <p>Conclusions</p> <p>Established cell lines carry cell lines-specific DCNAs together with recurrent aberrations detected in primary tumor tissues. It must therefore be emphasized that cell lines do not always represent the genotypes of parental tumor tissues.</p

    TAK1 Is Required for Survival of Mouse Fibroblasts Treated with TRAIL, and Does So by NF-κB Dependent Induction of cFLIPL

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a “death ligand”—a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-κB and JNK signalling pathways. To determine the role of TGF-β-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1−/− MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-κB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-κB, protected TAK1−/− MEFs against TRAIL killing, suggesting that TAK1 activation of NF-κB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-κB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1−/− MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1–NF-κB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance
    corecore